shadow said:
I suppose you figure you know more about speaker design than Vandersteen or Thiel.
May I add B&W to your list.
http://www.bwspeakers.com/index.cfm/fuseaction/local.faq/ObjectID/F5CA2E9F-3D20-11D4-A67F00D0B7473B37
Here's part of their explanation:
Most B&W speakers are provided with two pairs of speaker terminals; this allows you to either bi-wire or bi-amplify them. The aim of
both these techniques is not to simply get the customer to spend more on cables and electronics (although no manufacturer objects to this spin off) but to improve the resolution of the speakers.
A multi-way speaker contains a crossover network that not only divides the incoming signal into different frequency ranges, appropriate to the working range of each drive unit, but also equalises each driver’s response to be flat (raw driver responses are usually anything but flat).
There are two different basic types of crossover – series and parallel. Series crossovers have each filter section wired in series between the positive and negative input terminals. It is impossible to treat each filter section individually – each interacts with the others – and such crossovers are not suitable for bi-wiring or bi-amping. But by far the most common type is parallel. Here, each driver has its own filter wired between it and the input terminals. If there is only one pair of input terminals, the inputs to all the filters are connected in parallel to that one pair of terminals.
If, however, you have more than one pair of terminals, you can completely separate the inputs to each filter. Why on earth would you want to do such a thing?
In the case of bi-wiring, the answer lies in the cable connecting the speaker to the amplifier and the fact that the amplifier is a voltage source but the speaker is a current driven device (force on voice coil = magnet flux density x length of conductor in the magnet gap x current).
Firstly, all cables are a compromise. Some types of construction work better at low frequencies and others at higher frequencies. Providing separate inputs to the speaker allows you to use different cable types, each optimised for the frequency range of use.
"Secondly, consider that the cable has an impedance that causes a voltage drop along its length. Now consider the current flowing along the cable. Assume for the argument that the amplifier delivers a perfect voltage waveform to the cable and the cable itself adds no distortion. However, each driver has a non-linear impedance (for example, the inductance of the voice coil alters depending on its position in the magnet gap) that causes the current to be non-linear. This non-linear current through the impedance of the cable causes the voltage drop along the cable to be non-linear and thus the voltage across the speaker terminals is also non-linear, even though it is linear at the amplifier end.
If we were just concerned with one driver, things would not be too bad. But that non-linear voltage at the speaker terminals may contain harmonics within the frequency range of one of the other drivers and that driver will reproduce them, albeit at low level. If, however, you separate the inputs to each driver filter, each driver’s distortion is kept to itself and the total system distortion goes down. We are talking small changes here, but the resolution of some modern drivers is now so good that small improvements like this are readily detectable by keen listeners.
Many people ask us whether the load on the amplifier is different if you bi-wire. It is not. As far as the amplifier is concerned, it matters not one jot whether you parallel the inputs to the filter sections at the speaker end or the amplifier end of the speaker cable."
As the last paragraph said, the load on the amplifier is not different, but if we are talking about sound quality, then please read the whole article. Again, sorry about getting off the original topic, I just want to make sure people see more than one view point. I am keenly aware that Audiohoics does not believe bi-wiring is any different than using thicker wire. I also firmly disagree with that claim, but only from the engineering stand point. In fact, that's just about the only thing I disagree with Audioholics so far and I hope Gene won't be upset with me.